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ABSTRACT 

This paper presents a method to find generators of a fuzzy Lie group. By utilizing the algebraic and geometric properties 

of fuzzy Lie groups, we derive a systematic approach to identify a set of elements that generate the entire group. The 

methodology is rooted in the theory of fuzzy control sets and fuzzy Weyl group actions on fuzzy homogeneous spaces. 

Examples from 𝑆𝐿(2, ℝ) and 𝑆𝑂(3) and applications in theoretical physics and differential geometry are provided to 

illustrate the utility of the method. 
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INTRODUCTION 

A fuzzy Lie group is an extension of a classical Lie group where the membership of elements is described by a fuzzy set. 

This extension allows for the incorporation of uncertainty and partial membership, which is useful in various applications 

where systems are not strictly deterministic. 

This paper introduces a method to identify generators of a fuzzy Lie group by leveraging fuzzy control sets in 

fuzzy semigroup actions. The approach is based on the characterization of fuzzy control sets and the actions of the fuzzy 

Weyl group on fuzzy homogeneous spaces. The importance of such generators can be seen in numerous applications, from 

symmetry operations in quantum mechanics to transformations in differential geometry under uncertain conditions. 

PRELIMINARIES 

 Let G be a connected fuzzy Lie group, and let S ⊂ G be a fuzzy subsemigroup with interior points. Consider the fuzzy 

homogeneous space G/L, where L is a closed fuzzy subgroup of G. 

Definition: A fuzzy partial order ≤ on G/L is defined by a fuzzy relation such that x ≤ y to a degree μ(x, y), 

where μ: (G/L) × (G/L) → [0,1] is a membership function indicating the degree of inclusion.  

Theorem: The set G/L with the fuzzy partial order ≤ induced by the fuzzy semigroup action of S forms a fuzzy 

poset.  
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Proof. To show that (G/L, ≤) forms a fuzzy poset, we need to verify that the fuzzy relation ≤ is transitive.  

Suppose x, y, z ∈ G/L such that x ≤ y with degree μ(x, y) and y ≤ z with degree μ(y, z). 

 By the composition rule of fuzzy relations,  

the degree μ(x, z) ≥ min(μ(x, y), μ(y, z)).  

Thus, transitivity is satisfied to a fuzzy degree, and (G/L, ≤) forms a fuzzy poset.  

Lemma: If S ⊂ G is a fuzzy subsemigroup with interior points, then the induced fuzzy partial order ≤ on G/L is 

dense in the sense that for any x, y ∈ G/L, there exists z ∈ G/L such that x ≤ z ≤ y with appropriate fuzzy degrees.  

Proof. Since S has fuzzy interior points, for any x ∈ G/L and y ∈ Sx, there exists a neighborhood U ⊂ G/L such 

that U ∩ Sx ≠ ∅.  

Therefore, we can find z ∈ G/L such that x ≤ z ≤ y with degrees μ(x, z) and μ(z, y), demonstrating the density of 

the fuzzy partial order.  

Definition: A fuzzy control set D is a subset of G/L such that for any x, y ∈ D, there exists s ∈ S with y = sx to a 

fuzzy degree μ(y, sx).  

FUZZY CONTROL SETS 

Fuzzy control sets are crucial in understanding the dynamics of the fuzzy semigroup action on the fuzzy homogeneous 

space. These sets are where the fuzzy partial order ≤ effectively becomes a fuzzy equivalence relation. 

Theorem: Fuzzy control sets can be characterized by the action of the fuzzy Weyl group W on G. Each element 

w ∈ W corresponds to a fuzzy control set D୵.  

Proof. Consider the action of the fuzzy Weyl group W on G.  

Each element w ∈ W induces a transformation on G/L, resulting in distinct fuzzy subsets of G/L.  

These fuzzy subsets, invariant under the action of W, form fuzzy control sets D୵.  

The bijective correspondence between elements of W and these fuzzy control sets establishes the characterization.  

Proposition: The invariant fuzzy control set Dଵ associated with the identity element of the fuzzy Weyl group W 

corresponds to the fuzzy subgroup W(S) ⊂ W reflecting the structure and properties of the fuzzy subsemigroup S.  

Proof. The invariant fuzzy control set Dଵ is defined by the elements of G/L that remain unchanged under the fuzzy 

action of W.  

Since S ⊂ G has fuzzy interior points, the fuzzy control set Dଵ captures the fuzzy subgroup W(S) of the fuzzy 

Weyl group W that preserves these elements. Thus, Dଵ provides insight into the structure of W(S).  

METHODOLOGY 

To find generators for a fuzzy Lie group G, the following steps are undertaken: 

 Identify Fuzzy Control Sets: Determine the fuzzy control sets D୵for the action of the fuzzy semigroup S on the 

fuzzy homogeneous space G/L.  
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 Determine the Invariant Fuzzy Control Set: Identify the invariant fuzzy control set Dଵ, which is directly related 

to the fuzzy subgroup W(S) of the fuzzy Weyl group.  

 Analyze the Fuzzy Subgroup 𝐖(𝐒) : The structure of the fuzzy subgroup W(S)  provides insights into the 

elements that can serve as generators for G.  

 Construct Generators: Use the elements associated with the fuzzy subgroup W(S) to construct a generating set 

for the fuzzy Lie group G.  

Theorem 4.1 The set of elements associated with the fuzzy subgroup W(S) generates the entire fuzzy Lie group 

G.  

Proof. Let {gଵ, gଶ, … , g୩} ⊂ G be the set of elements associated with the fuzzy subgroup W(S).  

We need to show that any element g ∈ G can be expressed as a product of these elements. Since W(S) reflects the 

structure of the fuzzy subsemigroup S, and S acts transitively on G/L, any element of G can be reached by a finite sequence 

of actions from {gଵ, gଶ, … , g୩}.  

Therefore, these elements generate G.  

EXAMPLES 

 𝐒𝐋(𝟐, ℝ) 

Consider G = SL(2, ℝ), the group of 2 × 2 real matrices with determinant 1, extended to a fuzzy context. 

 Fuzzy Control Sets: The fuzzy Weyl group for SL(2, ℝ) is isomorphic to ℤଶ. The fuzzy control sets can be 

identified by examining the action on the fuzzy projective line ℝℙଵ.  

 Invariant Fuzzy Control Set: The invariant fuzzy control set Dଵ  corresponds to transformations preserving 

orientation in ℝℙଵ.  

 Generators: The matrices  

 A = ቀ
1 1
0 1

ቁ ,    B = ቀ
1 0
1 1

ቁ 

Generate the fuzzy Lie algebra 𝔰𝔩(2, ℝ). Exponentiating these matrices generates the entire SL(2, ℝ) group in the 

fuzzy context.  

Theorem 1 The matrices A and B generate SL(2, ℝ) in the fuzzy context.  

Proof. Any element of SL(2, ℝ) can be expressed as a product of exponentials of elements from its fuzzy Lie 

algebra 𝔰𝔩(2, ℝ).  

The matrices A and B span 𝔰𝔩(2, ℝ), and their exponentials cover all elements of SL(2, ℝ) in the fuzzy context, 

thus generating the group.  



72                                                                                            Kolli Janardhana Rao, Tetali Srinivasa Reddy, K.V. Vidyasagar & Dr. Ronanki Ravisankar 

 
Impact Factor (JCC): 6.6810                                                                                                                                                                        NAAS Rating 3.45 

 
Figure 1: Action of Generators on a Fuzzy Control Set. 

 
 𝐒𝐎(𝟑) 

Consider G = SO(3), the group of 3 × 3 orthogonal matrices with determinant 1, extended to a fuzzy context. 

 Fuzzy Control Sets: The fuzzy Weyl group for SO(3) is isomorphic to ℤଶ × ℤଶ. The fuzzy control sets can be 

understood by analyzing the action on the fuzzy unit sphere Sଶ.  

 Invariant Fuzzy Control Set: The invariant fuzzy control set Dଵ  corresponds to rotations preserving the 

orientation of Sଶ in the fuzzy context.  

 Generators: The matrices  

 R୶ = ൭
1 0 0
0 cosθ −sinθ
0 sinθ cosθ

൱,    R୷ = ൭
cosθ 0 sinθ
0 1 0
−sinθ 0 cosθ

൱ 

Generate the fuzzy Lie algebra 𝔰𝔬(3). Exponentiating these matrices generates the entire SO(3) group in the fuzzy 

context.  

Theorem: The rotations R୶ and R୷ generate SO(3) in the fuzzy context.  

Proof: The fuzzy Lie algebra 𝔰𝔬(3) is spanned by the infinitesimal rotations around the x- and y-axes. The 

matrices R୶ and R୷ generate these infinitesimal rotations, and their exponentials cover all rotations in SO(3) in the fuzzy 

context, thereby generating the group.  

APPLICATIONS 

Theoretical Physics 

In quantum mechanics, the generators of fuzzy Lie groups are essential for describing symmetries and conserved quantities 

under uncertainty. For example, the fuzzy SU(3) group is fundamental in the theory of strong interactions in particle 

physics, with its generators corresponding to the fuzzy Gell-Mann matrices. These generators play a crucial role in 

understanding the behavior of quarks and gluons under the strong force with inherent uncertainties [6]. 

Differential Geometry 

In differential geometry, the study of fuzzy Lie groups and their generators aids in understanding the structure of smooth 

manifolds under fuzzy conditions. The tangent spaces of fuzzy Lie groups are spanned by the generators of their 

corresponding fuzzy Lie algebras, which are crucial in defining geometric properties such as curvature and connections on 

manifolds under uncertainty. For instance, the generators of the fuzzy Lie algebra 𝔰𝔬(3) are used to study the curvature of 

surfaces in three-dimensional space with fuzzy conditions [8]. 
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Control Theory 

Control theory often utilizes fuzzy Lie groups to describe the state space of dynamic systems under uncertainty. The ability 

to generate the entire state space through a finite set of fuzzy controls (generators) is critical for the design and analysis of 

control systems. Techniques involving fuzzy control sets and fuzzy semigroup actions provide powerful tools for 

understanding the reachability and controllability of these systems under fuzzy conditions [2]. 

CONCLUSION 

The method of utilizing fuzzy control sets and the fuzzy Weyl group provides a systematic approach to identify generators 

for fuzzy Lie groups. By analyzing the fuzzy semigroup actions and the associated fuzzy control sets, one can derive a 

generating set that captures the structure of the entire group under fuzzy conditions. This approach offers a unified 

framework for studying the generators of fuzzy Lie groups, contributing to both theoretical insights and practical 

applications in the field of fuzzy Lie group theory. 
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